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Abstract

Portfolio Selection (PS) is a fundamental financial planning
task that aims to identify a strategy for dynamically allocating
wealth among a set of portfolio assets to maximize long-term
return. However, it is difficult to design a profitable strategy
in a complex and dynamic stock market. In this paper, we
propose a PS model using the Soft Actor-Critic (SAC) Deep
Reinforcement Learning (DRL) framework. Specifically, we
utilize Long Short-Term Memory (LSTM) to extract both
price series patterns and asset correlations from portfolio se-
ries, while using the DRL model to generate the portfolio
weight. Furthermore, we investigate the effect of including
stock movement prediction indicators in the state represen-
tation. We formulate experiments to evaluate our DRL mod-
els on real data from the U.S., Japanese and British stocks,
against benchmarks including state-of-the-art online portfo-
lio selection approaches, using measures consisting of Av-
erage daily yield, Sharpe ratio, Sortino ratio, and Maximum
drawdown. Our experiments show that the SAC-based trad-
ing strategy is profitable, robust, and risk-aware, as compared
to those of the baselines. Moreover, the introduction of addi-
tional financial indicators in the state representation is found
to have a positive effect overall.

Introduction
Portfolio selection is the task of determining how to opti-
mally allocate funds of a finite budget into a range of fi-
nancial assets (Filos 2019). As the saying goes, “Don’t put
all your eggs in one basket.” From the concept of portfo-
lio selection was proposed (Markowitz 1952), it has been a
very popular research topic (Samuelson 1975; Rockafellar
and Uryasev 2002; Chu, Tsai, and Pan 2006; Karimkashi
and Kishk 2010; Yu et al. 2022). Throughout literature,
two major paradigms for investigating the portfolio selec-
tion problem are identified. These are the Mean Variance
Theory (Markowitz 1952) originating from the finance com-
munity, and the Kelly Criterion (Kelly Jr. 1956; Cover and
Ordentlich 1996) originating from information theory.

However, only the Kelly Criterion fits the online scenario
and incorporates the online machine learning perspective,
consisting of multiple periods or steps (Gunjan and Bhat-
tacharyya 2022). Following Kelly Criterion, many kinds of
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portfolio selection methods have been proposed, including
online learning and reinforcement learning based methods.

Online learning based methods provide the optimal
per-trade position size to maximize the expected log-
return. The pioneering studies include Exponential Gra-
dient (EG) (Helmbold et al. 1998), Online Netwon Step
(ONS) (Hazan and Seshadhri 2009), Universal Portfolios
(UP) (Cover 1991), and Uniform Constant Rebalanced Port-
folios (UCRP) (Cover and Gluss 1986). Recently, several
methods exploit the mean reversion property to select the
portfolio, e.g., Passive Aggressive Mean Reversion (PAMR)
(Li et al. 2012), Robust Median Reversion (RMR) (Huang
et al. 2016), Online Moving Average Reversion (OLMAR)
(Li and Hoi 2012), and Weighted Moving Average Mean
Reversion (WMAMR) (Gao and Zhang 2013). Nonetheless,
all the above methods ignore sequential features and rely
solely on handcrafted features such as moving averages and
stochastic indicators. Consequently, they may perform un-
satisfactorily as a result of poor representation. Furthermore,
many of the above methods assume no transaction cost. Such
a cost will bring biases into the estimation of accumulative
returns, and thus affects the practical performance of these
methods (Zhang et al. 2020).

Reinforcement learning (RL) based methods, on the other
hand, use RL algorithms for optimizing specific utility func-
tions and making comprehensive portfolio policies (Ne-
uneier 1995; Neuneier and Mihatsch 1998). Recently, some
studies (Lee et al. 2020; Aboussalah and Lee 2020; Betan-
court and Chen 2021) apply deep reinforcement learning
to portfolio selection, where they use deep neural networks
to extract patterns. We found that these methods use only
the most basic trading indicators in the state space, such as
Open, Close, High, Low and Volume, etc. However, more
complex features, such as stock movement prediction indi-
cators used in online learning based methods, could be intro-
duced into the state space to improve model performance.

To address the aforementioned problems, in this paper,
we propose a PS model using the SAC algorithm (Haarnoja
et al. 2018), which achieves sample-efficient learning by
introducing entropy maximization. Furthermore, we utilize
LSTM (Hochreiter and Schmidhuber 1997) to extract both
price series patterns and asset correlations from portfolio
series, while using the SAC model to generate the portfo-
lio weight. It is worth mentioning that we consider practi-



cal trading constraints, such as transaction costs, to stably
train an autonomous agent whose investment decisions are
risk-aware yet profitable. Finally, we add stock movement
prediction indicators to the state space to improve the per-
formance of the model.

These models are compared with the online learning
based methods mentioned above, using different time win-
dow parameters, on real data from the U.S., Japanese and
British stocks. Experimental results show that the SAC-
based trading strategy is profitable, robust, and risk-aware,
as compared to those of the baselines. Further, adding ad-
ditional financial indicators to the state space has a positive
effect as a whole. Our main contributions are summarized as
follows.

• We apply the state-of-the-art SAC deep reinforcement
learning framework to the domain of portfolio selection,
expanding the application scenarios of the algorithm.

• Our proposed PS model applies stock movement predic-
tion indicators to the DRL state format. To the best of our
knowledge, this is the first attempt to use the functional-
ity of the online portfolio selection in the state format to
help DRL agent.

• Extensive experiments on real-world datasets demon-
strate the effectiveness and superiority of the proposed
method in terms of profitability, cost-sensitivity and rep-
resentation abilities.

Related Work
With the availability of large-scale market data, it’s natural
to employ deep learning (DL) model which can exploit the
potential laws of market in PS. DL-based portfolio selection
systems can provide users with financial services and invest-
ment advice by employing low-cost and easy-to-use algo-
rithms (Noonpakdee 2020). Meanwhile, the application of
deep learning algorithms can balance the risk and return of
investments, improving the portfolio to a large extent (Deng,
Xu, and Wu 2021). Previous studies (Heaton, Polson, and
Witte 2017; Ban, El Karoui, and Lim 2018; Chaouki et al.
2020) have demonstrated the effectiveness of neural network
(NN) models in predicting asset prices and allocating assets.
However, Given the nonlinear, dynamic, and chaotic nature
of the stock market, models are usually unstable and sensi-
tive to parameters. What’s even more crucial is, DL models
which have no interaction with the market have a natural
disadvantage in decision making problem like PS.

DRL is the combination of reinforcement learning and
deep neural networks for deep learning, extending to tasks
with high-dimensional input and action spaces. Today, a
large number of state-of-the-art algorithms in the field of
DRL are widely used in portfolio selection and optimization.
For instance, (Buehler et al. 2019) present a DRL frame-
work to hedge a portfolio of derivatives under transaction
costs, where the framework does not depend on specific mar-
ket dynamics. (Jiang, Xu, and Liang 2017) use the model-
free Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al. 2015) to dynamically optimize cryptocurrency port-
folios. Further, (Yu et al. 2019) propose a deep reinforce-

ment technique in which investment decisions and actions
are made periodically based on the current global objective.

Nevertheless, these methods above ignore the learning of
sequential features and do not control costs during optimiza-
tion, leading to limited representation abilities and perfor-
mance. In contrast, our method not only learns good feature
representation based on SAC framework but is also sensitive
to cost.

Proposed Solution
The complexity of the stock market presents volatility,
vulnerability, and uncertainty. Deep reinforcement learning
agents can make a dynamic adjustment at any time accord-
ing to changes in the environment, which can be successfully
applied to stock portfolio selection. In this paper, we propose
a PS model using the SAC DRL framework, as illustrated in
Figure 1. To extract more feature patterns to make accurate
decisions, We integrate stock movement prediction indica-
tors with the prices of assets for state augmentation. Next,
we adopt the soft actor-critic algorithm based on the aug-
mented state for learning the policy of PS. Specifically, we
will detail these method components in the following sub-
sections.

Problem Settings
Consider a portfolio selection task over a financial market
during n periods with m+1 assets, including one cash asset
and m risk assets. On the tth period, we denote the prices
of all assets as pt ∈ R(m+1)×d

+ , where each row pt,i ∈ Rd
+

indicates the feature of asset i, and d denotes the number
of prices. Specifically, we set d = 4 in this paper. That is,
we consider four kinds of prices, namely the opening, high-
est, lowest and closing prices. One can generalize it to more
prices to obtain more information. The price series is rep-
resented by Pt = {pt−k, .., pt−1}, where k is the window
length. The window length is a configurable parameter that
denotes the number of past time steps considered relevant
for each state. We experiment using the window sizes 3, 7
and 11.

The price change on the tth period is specified by a
price relative vector xt =

pc
t

pc
t−1

∈ Rm+1
+ , where pct is

the closing price of assets. Assuming there is no inflation
or deflation, the cash is risk-free with invariant price, i.e.,
{∀t | xt,0 = 1}, and it has little influence on the learning
process. We thus exclude the cash asset in the input, i.e.,
Pt ∈ Rm×k×4. The price relative vector can be used to cal-
culate change in total portfolio value in a period. For exam-
ple, given that pt−1 is the portfolio value at the beginning of
period t, without taking transaction cost into consideration,
pt is calculated as follows:

pt = pt−1x
⊤
t at (1)

where at is the portfolio weight vector at the beginning
of period t. When making decisions, the investment de-
cision is specified by the portfolio weight vector at =
[at,0, at,1, at,2, . . . , at,m] ∈ Rm+1, where at,i ≥ 0 is the
proportion of asset i, and

∑m
i=0 at,i = 1. Here, the portfo-

lio decision contains the proportion of all assets, including
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Figure 1: The framework of our proposed state-augmented SAC-based portfolio selection method. The price information of
multiple stocks in the market constitutes the original state s∗. Meanwhile, online portfolio selection methods such as EG, ONS,
and OLMAR extract stock movement prediction indicators δ from the price series for state enhancement. Finally, the soft policy
network will generate the portfolio weight vector from the augmented state s.

the cash at,0. The initial portfolio weight vector a0 is set to
(1, 0, ..., 0), and the elements in the portfolio weight vector
at any period at, always sum up to one. Therefore, the loga-
rithmic rate of return for period t is

lt = ln
pt

pt−1
= lnx⊤

t at (2)

Hence, assuming no transaction cost, the final portfolio
value is

Sn = S0 exp

(
n∑

t=1

lt

)
= S0

n∏
t=1

x⊤
t at (3)

where S0 is the initial investment amount. This is set to 1
throughout all our experiments. However, in the real market,
adjusting the portfolio’s asset allocation is usually not free,
which would introduce transaction cost. After considering
transaction cost ct, Sn is calculated as follows:

Sn = S0

n∏
t=1

x⊤
t at (1− ct) (4)

There are two general assumptions (Li and Hoi 2012;
Zhang et al. 2020) in this task: (i) perfect liquidity: all mar-
ket assets are liquid enough to make every trading at the
last price immediately possible when an order is placed;
(ii) zero-market-impact: the investments done by our trading
agents are so small that they have no effect on the market.

Markov Decision Process for Portfolio Selection. We
formulate the investment process as a generalized Markov
Decision Process by (S,A, T ,R). Specifically, on the tth
period, the agent observes a state st = Pt ∈ S , and takes
an action at ∼ π(· | st) ∈ A, which determines the reward
rt = x⊤

t at ∈ R, while the next state is a stochastic transi-
tion st+1 ∼ T (st). When considering the transaction cost,
the reward will be adjusted as rct = rt ∗ (1− ct), where ct
is the proportion of transaction cost.

Soft Actor Critic (SAC)
The Soft Actor Critic (SAC) (Haarnoja et al. 2018) is an
off-policy algorithm developed for maximum entropy rein-
forcement learning. Compared to the DDPG (Lillicrap et al.

2015), the SAC uses stochastic policy, which has certain ad-
vantages over deterministic policy. The SAC requires the ac-
tor to maximize the entropy of reward expectation and strat-
egy distribution at the same time. The introduction of max-
imum entropy enhances action exploration ability, enabling
the exploration of more stock decisions and achieving more
stable performance under complex circumstances.

The iterative process of the SAC is divided into soft pol-
icy evaluation and soft policy improvement. For fixed strat-
egy π, its soft Q value can be iterated by Bellman backup
operator T π:

T πQ (st,at) ≜ r (st,at) + γEst+1∼p [V (st+1)] (5)

where

V (st) = Eat∼π [Q (st,at)− α log π (at | st)] (6)

is the soft state value function. The hyperparameter α mea-
sures the relative importance of entropy for reward. In prac-
tice, tractable policies are preferred. Thus, we additionally
restrict the policy to set of policies II that can correspond to
a parameterized family of distributions such as Gaussians.
The soft policy is updated as follows:

πnew = arg min
π′∈Π

DKL

(
π′ (· | st) ∥

exp (Qπold (st, ·))
Zπold (st)

)
(7)

where Zπold (st) is the partition function used to normalize
the distribution of Q values. Different from the usual off-
policy method used to maximize the Q value, the policy of
the SAC is updated in the direction of an exponential dis-
tribution proportional to Q. In practice, to facilitate the pro-
cessing of the policy, we still output the policy as a Gaussian
distribution and minimize the gap between the two distribu-
tions by minimizing KL divergence.

By using soft policy evaluation and soft policy improve-
ment repeatedly and alternately, the final policy will con-
verge to the optimal value. The learning objective of the
SAC is as follows:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ
[r (st,at) + αH (π (· | st))]

(8)



Table 1: The company name abbreviation of 30 stocks selected in the U.S., Japanese, and British markets respectively.

Market Company Symbol

The U.S. stock (30 stocks) AAPL, AMGN, AXP, BA, CAT, CRM, CSCO, CVX, DIS, DOW, GS, HD, HON, IBM, INTC,
JNJ, JPM, KO, MCD, MMM, MRK, MSFT, NKE, PG, TRV, UNH, V, VZ, WBA, WMT

The Japanese stock (30 stocks) Advantest Corp, Alps Electric, Amada, Casio, Chiba Bank, Chugai Pharmaceutical, Concordia
Financial Group, Dainippon Screen Mfg, DIC Corp, Eneos Holdings Inc, Fujikura Ltd, GS Yuasa
Corp, Hitachi, Hitachi Zosen Corp, Isuzu Motors Ltd, J.Front Retailing Co, Japan Steel Works Ltd,
JR West Japan, KDDI, Keisei Electric Railway Co, Konami Corp, Maruha Nichiro Corp, Mazda,
Minebea Mitsumi Inc, Mitsubishi Motors, Mitsui chemical, NEC, Sony, Tokyo Electric Power,
Yamaha

The British stock (30 stocks) ABDN, AZN, BATS, BGUK, BLND, BP, CPG, CRH, EDEV, ENT, FLTRF, HIK, HLMA, ICP,
JETJ, LSEG, MRON, NG, NWG, OCDO, POLYP, PSHP, RMV, RR, RTO, SGE, SMDS, SMT,
SSE, TW

The randomness of the optimal control policy controlled by
α is determined by the following formula:

α∗
t = argmin

αt

Eat∼π∗
t

[
−αt log π

∗
t (at | st;αt)− αtH

]
(9)

Relative to the deterministic policy, the stochastic pol-
icy of the SAC also requires entropy maximization, which
means that the neural network needs to explore all possi-
ble optimal paths. This can produce the following advan-
tages. (i) The policy will learn many ways to complete
tasks through maximum entropy, which is more conducive to
learning new tasks. (ii) Clearly, the policy’s stronger explo-
ration ability makes it easier to find better modes under mul-
timodal rewards. For example, stock decision-making agents
should not only obtain high returns but also reduce trading
risks. (iii) The policy is more robust and generalizable by
exploring various optimal possibilities in different ways, so
it is easier to adjust in the face of interference. For exam-
ple, when facing different stock markets, agents can make
different decisions in dealing with different environments.

Finally, in order to extract patterns from a portfolio series,
we use the same approach used in prior works, based on a
Long Short-Term Memory (LSTM) predictor (Zhang et al.
2020; Aboussalah and Lee 2020). Both the actor and critic
networks, for our SAC framework, utilize the same configu-
ration.

Experiments
In this section, we compare our proposed SAC-based port-
folio selection method with other methods on real data from
the U.S., Japanese and British stocks. We will summarize
these three datasets, describe the training process, define the
evaluation metrics, introduce the baseline PS methods for
comparison and perform extensive experiments to validate
the effectiveness of state augmentation.

Datasets
We first explain the selection of stock data used for our
trading strategy. As is well known, 30 Dow Jones stocks
cover representative companies from many different indus-
tries, mainly including financial services, pharmaceutical in-
dustry, information technology, etc., and can reflect the state
of the U.S. stock market to a certain extent. Therefore, these

data are useful to train the robustness, effectiveness, and uni-
versality of our proposed model. Thus, these 30 Dow Jones
stocks are very suitable for the training and testing of our
proposed strategy.

In addition to 30 U.S. stocks, we also choose 30 Japanese
and British stocks for our experiments to verify the gener-
ality and applicability of the model. The company names
of the stocks are shown in Table 1. Along the timeline
of the original datasets, we partition the data samples for
1985/01/07 to 2006/11/02 as a training set and those for
2006/11/03 to 2010/06/29 as a testing set. Namely, datasets
are split in a 6:1 ratio for training and testing, respectively.
Our selected ratio allows for a great number of training
steps, whilst still leaving an adequate number of testing
steps.

Training
Training was done over 500 episodes, each consisting of
1000 steps. At the start of each episode, the agent is placed
at a random point within the training subset. This starting
step is to allow for the training steps to be completed. When
the networks are to be trained, the training is done with a
mini-batch of 128, sampled uniformly from a replay buffer
consisting of the agents’ history.

In order to avoid overfitting, we include a value func-
tion threshold parameter which terminates the training phase
when a reward value threshold is exceeded for a number of
consecutive episodes. For example, if the rewards exceed the
threshold value in 10 successive episodes, training will stop
before reaching the defined 500 episodes. The reward value
limit is selected for each dataset based on the best possible
baseline performance.

Evaluation Metrics
We evaluate our portfolio optimisation models with the fol-
lowing criteria:

• Average Daily Yield (ADY): The mean of all the returns
obtained. A higher value is better.

• Sharpe Ratio (SHR): The Sharpe ratio (Sharpe and
Pnces 1964) is the average return earned in excess of the
risk-free rate per unit of volatility or total risk. It is used
to compare the portfolio’s return to its risk and is defined



Figure 2: Portfolio Value (PV) of different methods on 30 U.S. stocks.

as follows:
SHR =

Rp −Rf

σp
(10)

where Rp is the return of the portfolio, Rf is the riskfree
rate and σp is the standard deviation of the portfolio’s
excess return.

• Sortino Ratio (SOR): Very similar to the Sharpe ratio,
but instead penalises only the downside deviation αd, the
risk of losing value (Sortino and Price 1994). The for-
mula for Sortino ratio is as follows:

SOR =
Rp −Rf

αd
(11)

• Maximum Drawdown (MDD): The maximum loss
from a peak to a trough, before a new peak is attained.
In this case a lower value is better. The formula for MDD
is as follows:

MDD =
Trough Value − Peak Value

Peak Value
(12)

• Portfolio Value (PV): The total wealth an agent has after
the last step has been completed. Expressed as a ratio to
the initial portfolio value of 1.

Baselines
• CRP. Constant rebalanced portfolio (CRP) (Cover and

Gluss 1986) is an investment strategy which keeps the
same distribution of wealth among a set of assets from
day to day. That is, the proportion of total wealth in a
given asset is the same at the beginning of each day.

• UP. The full title of UP (Cover 1991) is µ-Weighted Uni-
versal Portfolio, µ denoting the distribution on the space
of valid portfolio △m. As (Li et al. 2012) describe, this
strategy can be interpreted as a historical performance

weighted average of all valid constant rebalanced portfo-
lios.

• EG. Exponentiated Gradient (EG) (Helmbold et al.
1998) is an online investment algorithm that achieves
almost the same wealth as the best constant-rebalanced
portfolio determined in hindsight from the actual market
outcomes.

• ONS. Online Newton Step (ONS) (Hazan and Seshadhri
2009) is an investment algorithm that first combines op-
timal logarithmic regret bounds with efficient determin-
istic computability.

• OLMAR. On-Line Moving Average Reversion (OL-
MAR) (Li and Hoi 2012) is a method that exploits mov-
ing average reversion to overcomes the limitation of
single-period mean reversion assumption.

• WMAMR. Weighted Moving Average Mean Rever-
sion(WMAMR) (Gao and Zhang 2013) is a method
which fully exploits past period price relatives using
equalweighted moving averages and then learns portfo-
lios by online learning techniques.

Experiment 1: Comparison of SAC-Based Model
with Baselines
Our SAC-Based model was trained on the U.S., Japanese
and British stock datasets using different window lengths (3,
7, 11). Next, These trained models were evaluated on the re-
maining 1

6 of the datasets from 2006/11/03 to 2010/06/29.
The datasets proved to be a difficult test for our models due
to the ”Great Recession” stock market crash of 2008. Ac-
cordingly, the training subset consists of another crash in
1987, which could help train our models. The results of the
best performing models with their respective time windows
are shown in Table 2, 3 and 4. It is worth noting that the



Table 2: Performance Comparisons on 30 U.S. stocks.
(The best value for each criteria is in boldface)

Model ADY(%) SHR(%) SOR(%) MDD(%) PV

SAC-3-OLMAR 0.273 7.348 10.857 36.112 4.165
SAC-3 0.229 3.825 4.905 47.354 1.831
CRP 0.225 3.909 4.769 90.344 1.314
UP 0.210 3.410 4.204 90.381 1.207
EG 0.023 0.831 0.944 66.165 0.958
ONS 0.049 0.466 0.527 95.208 0.251
OLMAR 0.232 3.817 5.696 74.801 1.951
WMAMR 0.007 0.085 0.091 96.395 0.094

Table 3: Performance Comparisons on 30 Japanese stocks.
(The best value for each criteria is in boldface)

Model ADY(%) SHR(%) SOR(%) MDD(%) PV

SAC-11-OLMAR 0.268 5.274 10.571 55.801 7.295
SAC-11 0.224 4.851 8.323 47.125 6.206
CRP 0.018 0.517 0.915 63.208 0.958
UP 0.015 0.459 0.813 61.514 0.814
EG 0.013 0.426 0.906 59.323 0.920
ONS 0.008 0.016 0.045 82.317 0.107
OLMAR 0.195 1.752 3.270 95.131 2.580
WMAMR 0.039 0.377 0.355 88.203 0.354

Table 4: Performance Comparisons on 30 British stocks.
(The best value for each criteria is in boldface)

Model ADY(%) SHR(%) SOR(%) MDD(%) PV

SAC-11-OLMAR 0.313 7.257 14.785 36.273 4.151
SAC-11 0.270 6.003 10.207 78.132 3.207
CRP 0.013 0.656 1.016 65.732 0.970
UP 0.020 0.768 1.003 63.215 0.985
EG 0.013 0.696 0.944 60.117 0.927
ONS 0.003 0.027 0.085 96.181 0.079
OLMAR 0.137 3.580 4.674 90.585 1.879
WMAMR 0.084 0.871 0.418 93.132 0.334

model names are concatenated using the RL algorithm (i.e.
SAC) and the window length (e.g. 3).

We observed that individually, SAC with a window length
of 11 performed best overall on all criteria in the Japanese
and British stock markets compared to online learning based
methods. Similarly, SAC with a window length of 3 per-
formed best overall in the U.S. stock market. However, SAC-
3 failed to exceed all the baselines (less than OLMAR) for
two important indicators, ADY and PV, which suggests that
our model still has room for further improvement.

Experiment 2: Comparison of State Augmented
Model with Baselines
Our models may be improved in a variety of ways. Without
any external components, the three essential elements of the
RL framework are the state, action, and reward. The form of
the action, which is a list of weights assigned to portfolio as-
sets, is essential, and this structure is to remain in any future

model. The forms of the state and reward, on the other hand,
can be adjusted in ways that could introduce improvements.
However, altering the reward function also implies a shift
in the optimization objective, but this is something we do
not expect to happen. For past PS methods, the state format
consists only of raw market prices, which may not provide
enough information to make accurate decisions. To this end,
we try to improve the model performance by enhancing state
representation.

From the experimental results in Table 2, 3 and 4, we ob-
serve that OLMAR is the best performing online learning
based method. OLMAR exploits moving average reversion
to overcome the limitation of single-period mean reversion
assumption. Therefore, it is very natural for us to consider
using OLMAR to extract stock movement prediction indica-
tors from the price series for state enhancement.

To assess whether OLMAR can help our model, we in-
cluded the OLMAR prediction function inside the state of
our SAC model, using the same window size. The exper-
imental results show that the state-augmented model per-
forms best on all three datasets, as seen in Table 2, 3 and 4. It
is worth mentioning that the state-augmented model SAC-3-
OLMAR achieved the most amazing performance in the U.S.
stock market, and its final portfolio value is more than twice
that of SAC-3, as seen in Figure 2.

Conclusion
In this work, we propose a portfolio selection model using
the SAC framework that can extract features with LSTM
while generating portfolio weights by DRL. Next, we intro-
duce the OLMAR prediction function within the state to fur-
ther enhance state representation. Experimental results for
90 stocks (the U.S., Japanese and British markets) demon-
strate that the SAC-based trading strategy is profitable, ro-
bust, and risk-aware, as compared to those baselines. Fur-
ther, adding additional financial indicators to the state space
is found to have a positive effect overall.

In the future, we will explore more strong decision-
makers with good performance and integrate them into our
strategies. Additionally, we will focus on other factors that
influence stock trading, such as social news, sentiment, and
politics. Finally, we will study ways to lower the annual
volatility and investment risk of our DRL methods under the
conditions of high returns.
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